stoichiometry
atomic mass
formula mass
molecular mass
gram atomic mass atomic mass written in grams gram formula mass formula mass written in grams gram molecular mass molecular mass written in grams

Formula or molecular mass is found by simply summing the atomic masses (on the periodic table) of each atom in a formula.
$\mathrm{H}_{2} \mathrm{SO}_{4}$
$1.01+1.01+32.06+16.0+16.0+16.0+16.0=98.08 u$ $2(1.01)+32.06+4(16.0)=\mathbf{9 8 . 0 6} \mathbf{u}$ or $\mathbf{9 8 . 0 6} \mathbf{g} / \mathrm{mole}$

Generally, round off your answers to the hundredths or tenths place. Don't round off too much $(98.06 \mathrm{~g} / \mathrm{mol}$ or $98.1 \mathrm{~g} / \mathrm{mol}$ is OK , but don't round off to $98 \mathrm{~g} / \mathrm{mol}$)

Units
Use u or amu if you are referring to one atom or molecule

A mole (abbreviated mol) is a certain number of things. It is sometimes called the chemist's dozen.
A dozen is 12 things, a mole is 6.02×10^{23} things.

Avogadro's Number

1 mole of any substance contains 6.02×10^{23} molecules
Molar Volume (measured at $\mathrm{P}=760 \mathrm{mmHg}$ and $\mathrm{T}=0^{\circ} \mathrm{C}$)
1 mole of any gas has a volume of 22.4 Liters
Molar Mass (see gram formula mass)
1 mole of any substance is its gram formula mass
$\frac{1 \text { mole }}{6.02 \times 10^{23} \text { molecules }} \quad \frac{1 \text { mole }}{22.4 \mathrm{~L}} \quad \frac{1 \text { mole }}{\text { molar mass }}$

A Line Equation is the preferred way to show conversions between quantities (amount, mass, volume, and number) by canceling units (moles, grams, liters, and molecules)

The line equation consists of the Given Value, the Desired Unit, and the line equation itself.

Example: What is the mass of 135 Liters of CH_{4} (at STP)?
Given: $135 \mathrm{~L} \mathrm{CH}_{4}$
Desired: ? g CH4
$135 \mathrm{LCH}_{4} \times \frac{1 \mathrm{~mol} \mathrm{CH}_{4}}{22.4 \mathrm{~L} \mathrm{CH}_{4}} \times \frac{16.0 \mathrm{~g} \mathrm{CH}_{4}}{1 \mathrm{~mol} \mathrm{CH}_{4}}=96.43 \mathrm{~g} \mathrm{CH}_{4}$

$8 \cdot$ Mathematics of Chemical Formulas Mole Relationships
 (5 of 8)

$8 \cdot$ Mathematics of Chemical Formulas Percentage Composition (by mass) (6 of 8)

$8 \cdot$ Mathematics of Chemical Formulas Formula from \% Composition (7 of 8)

The "Mole Map" shows the structure of mole problems

Percentage Composition quantifies what portion (by mass) of a substance is made up of each element.

Set up a fraction: $\frac{\text { mass of element }}{\text { mass of molecule }}$
Change to percentage: $100 \times \frac{\text { mass of element }}{\text { mass of molecule }}$

Generally, round off your answers to the tenth's place.
The percentage compositions of each element should add up to 100% (or very close, like 99.9% or 100.1%)

Given the Percentage Composition of a formula, you can calculate the empirical formula of the substance.

Step 1 assume you have $\mathbf{1 0 0} \mathbf{g}$ of substance so the percentages become grams
Step 2 change grams of each element to moles of atoms of that element
Step 3 set up a formula with the moles example: $\mathrm{C}_{2.4} \mathrm{H}_{4.8}$
simplify the formula by dividing moles by the smallest value $\mathrm{C}_{2.4}^{2.4} \mathrm{H}_{2.4}^{4.8}=\mathrm{CH}_{2}$ If ratio becomes... $1: 1.33$ or $1: 1.66$ multiply by 3

The gas density is often converted to molar mass:

Example:

The gas density of a gas is $3.165 \mathrm{~g} /$ Liter (at STP). What is the molar mass of the gas?

Knowing that 22.4 L is 1 mole, you can set up the ratio:

$$
\frac{3.165 \mathrm{~g}}{1 \text { Liter }}=\frac{\text { molar mass }}{22.4 \mathrm{~L}}
$$

Other metric conversions you should know:
$\frac{1000 \mathrm{~mL}}{1 \text { Liter }} \quad \frac{1 \mathrm{~kg}}{1000 \text { grams }}$

