9 • Chemical Equations Equation Terms (1 of 8)

9 • Chemical Equations

Types of Reactions and other Terms

(2 of 8)

equation	condensed statement of facts about a chemical reaction.
reactants	substances that exist before a chemical reaction. Written on the left of the arrow.
products	substances that come into existence as a result of the reaction. Written to the right of the arrow.
word equation	an equation describing a chemical change using the names of the reactants and products.
coefficients	a number preceding atoms, ions, or molecules in balanced chemical equations that showing relative #'s.

synthesis A + B = Cdecomposition AB = A + Bsingle replacement AB + C A + BCdouble replacement AB + CD AD + CBprecipitate solid that is formed during a reaction spectator ions ion that undergoes no chemical change during a reaction equation with reactants and products molecular equation written as whole molecules ionic equation equation with soluble salts written as individual ions net ionic equation equation with spectator ions removed

EXOTHERMIC

- reaction **gives off energy**
- energy is written as a product on the **right** side of arrow
- reaction mixture generally gets warmer or must be cooled [combustion] $CH_4 + 2 O_2$ $CO_2 + 2 H_2O + energy$ [freezing] $H_2O(1)$ $H_2O(s) + energy$

ENDOTHERMIC

- reaction **requires** or **takes in** energy
- energy is written as a reactant on the left side of the arrow
- reaction mixture takes warmth from surroundings or must be warmed... for example [electrolysis of water] 2 H₂O + energy 2 H₂ + O₂

We have seen the **phases of matter** in earlier chapters. See page 212 for atomic pictures.

(s) solid phase may be used to show a **ppt**.

(I) liquid phase

(g) gaseous phase

(aq) aqueous phase -- solid or gas dissolved in water

- (ppt) precipitate -- solid (s) formed during a reaction use Appendix D or solubility rules to predict when a product is a precipitate.
- (l) vs (aq) sugar(l) would be melted sugar sugar(aq) would be sugar water (dissolved)

9 • Chemical Equations Energy Changes (3 of 8)

9 • Chemical Equations Showing Phases in Equations (4 of 8)

9 • Chemical Equations Molecular, Ionic, Net Ionic Equations (5 of 8)

> 9 • Chemical Equations Writing Word Equations Things To Remember (6 of 8)

9 • Chemical Equations Writing Formula Equations Things To Remember (7 of 8)

9 • Chemical Equations Miscellaneous: Law of Conservation of Mass and Complete Combustion Reactions (8 of 8) Consider the compounds: silver nitrate + sodium chromate Ag^+ NO₃⁻ Na⁺ CrO₄²⁻

 $\begin{array}{l} \textbf{molecular equation} \ [balance at this stage] \\ (use double replacement pattern to predict the products) \\ 2 \ AgNO_3 \ + \ Na_2CrO_4 \qquad Ag_2CrO_4(s) \ + \ 2 \ NaNO_3 \end{array}$

ionic equation [use sol. rules to determine (aq) or (s)] $2 \text{ Ag}^+ + 2 \text{ NO}_3^- + 2 \text{ Na}^+ + \text{ CrO}_4^{2-}$ $\text{Ag}_2\text{CrO}_4(s) + 2 \text{ Na}^+ + 2 \text{ NO}_3^-$

net ionic equation [remove spectator ions] $2 \text{ Ag}^+ + \text{CrO}_4^{2-} \text{ Ag}_2\text{CrO}_4(s)$

Example: Write the **word equation** of...

 $SiO_2 + 4 HF$ $SiF_4 + 2 H_2O$ silicon dioxide + hydrofluoric acid

silicon tetrafluoride + water

- **molecular compounds** must be named using mono-, di-, tri-, tetra-, penta-, hexa-, hepta-, octa-, nona-, deca-.
- watch for **acids** (ionic compounds ... positive ion is **H**⁺) acid naming rules apply (-ide = hydro---ic acid, etc.)
- **ionic compounds** do **NOT** use di-, tri-, etc. unless they are part of the ion name (e.g. **di**chromate, Cr₂O₇²⁻) ionic cmpds are named as the positive and negative ion. Stock names may be used.

Example: Write the formula equation of ...

 $\begin{array}{ccc} so dium \ metal + water & so dium \ hydroxide + hydrogen \ gas \\ Na^\circ + H_2O & NaOH + H_2 \end{array}$

- **metals** often are written with the ° symbol to emphasize that the metal is in the neutral elemental state, not an ion.
- some compounds have common names that you should just know... water, H₂O; ammonia, NH₃; methane, CH₄
- remember the seven **diatomic** elements so they can be written as diatomic molecules when they appear in their elemental form. Other elemental substances are written as **single atoms** (e.g. sodium metal or helium gas, He)

The **law of conservation of mass** can be shown by comparing the **total masses** of **reactants** and **products**.:

Example: Show that the law of conservation of mass applies to the balanced equation...

 $C_{3}H_{8} + 5 \dot{O}_{2}$ 3 $CO_{2} + 4 H_{2}O$ 44 g + 5(32 g) = 3(44 g) + 4(18 g)

Combustion (burning) implies a **fuel** and three chemicals: **O**₂, **CO**₂, and **H**₂**O**. **Example**: combustion of C₃H₈ above.

Careful when balancing: C₂H₅OH... Notice: 6H's and an O. Use **fractions** to show **odd** #'s of O atoms, $\frac{3}{2}$ O₂ = 3 atoms