10•Mathematics of Chemical Equations Coefficients and Relative Volumes of Gases (1 of 8)

Since every gas takes up the same amount of room (22.4 L for a mole of a gas at STP), the coefficients in an equation tell you about the volumes of gas involved.

Example: $\quad \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$

The "heart of the problem" conversion factor relates the Given and the Desired compounds using the coefficients from the balanced equation.

Example: $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$

$$
\boldsymbol{v} \text { could be } \frac{3 \text { moles } \mathrm{H}_{2}}{2 \text { moles } \mathrm{NH}_{3}}
$$

... which means that every time 2 moles of NH_{3} is formed, 3 moles of H_{2} must react.

The format is always, $\frac{\text { moles of Desired }}{\text { moles of Given }}$

Mass-Mass problems are probably the most common type of problem. The Given and Desired are both masses (grams or kg).

The pattern is:

Given x\begin{tabular}{l}
molar mass

of Given

$\quad x \quad \geqslant \quad x \quad$

molar mass

of Desired
\end{tabular}

In Mass-Volume problems, one of the molar masses is replaced with $\frac{22.4 \mathrm{~L}}{1 \text { mole }}$ depending on whether the Given or the Desired is Liters.

If the Given or Desired is molecules, then the Avogadro's Number conversion factor, $\frac{6.02 \times 10^{23} \text { molecules }}{1 \text { mole }}$ is used and the problem is a Mass-Particle or Volume-Particle problem.

The units of the Given and Desired will guide you as to which conversion factor to use:

Mass grams or kg
Volume Liters or mL
Particles molecules or atoms

$10 \cdot$ Mathematics of Chemical Equations Limiting Reactant Problems (5 of 8)

10 • Mathematics of Chemical Equations How Much Excess Reactant is Left Over (6 of 8)

10 • Mathematics of Chemical Equations Limiting Reactants (7 of 8)

10 • Mathematics of Chemical Equations Lab 16 (Baking Soda Lab) Ideas (8 of 8)

In a problem with two Given values, one of the Given's will limit how much product you can make. This is called the limiting reactant. The other reactant is said to be in excess.

Solve the problem twice using each Given... the reactant that results in the smaller amount of product is the limiting reactant and the smaller answer is the true answer.

Example: $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$
When $\mathbf{2 8 . 0}$ grams of $\mathbf{N}_{\mathbf{2}}$ reacts with $\mathbf{8 . 0 0}$ grams of $\mathbf{H}_{\mathbf{2}}$, what mass of NH_{3} is produced?
(in this case, the N_{2} is the limiting reactant)

Example: $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$
When $\mathbf{2 8 . 0}$ grams of $\mathbf{N}_{\mathbf{2}}$ reacts with $\mathbf{8 . 0 0}$ grams of $\mathbf{H}_{\mathbf{2}}$, what mass of NH_{3} is produced?
(in this case, the N_{2} is the limiting reactant)
To find out how much H_{2} is left over, do another line equation:
Given: $28.0 \mathrm{~g} \mathrm{~N}_{2}$
Desired: ? g H2
subtract the answer of this problem from $8.00 \mathrm{~g} \mathrm{H}_{2}$

It is difficult to simply guess which reactant is the limiting reactant because it depends on two things:
(1) the molar mass of the reactant and
(2) the coefficients in the balanced equation

The smaller mass is not always the limiting reactant.
Example: $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$
1 mole ($28 \mathrm{~g} \mathrm{~N}_{2}$) will just react with 3 moles $\left(6.06 \mathrm{~g} \mathrm{H}_{2}\right.$) so, if we react $28.0 \mathrm{~g} \mathrm{~N}_{2}$ with $8.0 \mathrm{~g} \mathrm{H}_{2}$, only $6.06 \mathrm{~g} \mathrm{H}_{2}$ will be used up and 1.94 g of H_{2} will be left over.
In this case, N_{2} is the L.R. and H_{2} is in XS.

The reaction: $\mathrm{NaHCO}_{3}+\mathrm{HCl} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{NaCl}$

The Point:

We can calculate the mass of $\mathbf{N a C l}$ expected from any starting mass of NaHCO_{3}
We can also experimentally measure the mass of $\mathbf{N a C l}$ left over after reacting NaHCO_{3} and HCl
These two values should match. Percent error is a good way to report how good your experimental value is.

Techniques:

We used excess HCl . The CO_{2} escapes as a gas. The $\mathrm{H}_{2} \mathrm{O}$ is driven off by evaporation. Drying thoroughly is impt.

