14 • The Periodic Table **Terms about the Periodic Table People of the Periodic Table** (1 of 8)

period	a horizontal row of the table							
group / family	a vertical column of the table							
periodic law	properties repeat if you arrange elements by atomic mass . The modern periodic law arranges elements by atomic number							
Döbereiner	triads of similar elements							
Newlands	Law of Octaves for similar elements							
Meyer	close to a modern periodic table							
Dimitri Mendeleev	first to publish, predicted missing elements, his table was very detailed							
hydrogen	a family by itself because it acts like both group I and group VII							
alkali metals alkaline earth metals	Family I forms 1+ ions Family II forms 2+ ions							
halogens	Family VII (salt formers) forms 1– ions							
noble gases	Family VIII He, Ne, Ar are inert							
representative	Families I – VIII							
elements	s-block (I & II) and p-block (III – VIII)							
elements	d-block (often form colored compounds)							
inner transition	f-block (lanthanoids and actinoids)							
ionization energy	y							
energy neede	ed to remove an electron from an atom							
ex: Li + ene	ergy Li ⁺ + e ⁻							
atomic radius	size of an atom							
ionic radius	size of an ion							
negative ions	s get larger ; positive ions get smaller							
metallic charact	er (compared to nonmetals)							

low ionization energies... form positive ions **low** electronegativities high luster

easily deformed (malleable and ductile) good conductors of heat and electricity

14 • The Periodic Table **Families (Groups) of the Periodic Table** (2 of 8)

14 • The Periodic Table Terms used in the Trends (3 of 8)

14 • The Periodic Table **Trends of the Periodic Table** (4 of 8)

14 • The Periodic Table Explaining The Size of Atoms and Ions (5 of 8)

14 • The Periodic Table Explaining Ionization Energy (6 of 8)

> 14 • The Periodic Table Isoelectronic Species (7 of 8)

14 • The Periodic Table Clues from the Periodic Table (8 of 8) The <u>size of an atom</u> depends on the **electron cloud**... the **average distance** of the **valence e⁻'s** from the **nucleus**.

Three important factors:

the e⁻ - e⁻ **repulsion** ... making the atom **larger** the p⁺ - e⁻ **attractions**... making the atom **smaller** the *principal quantum number*, **n**... as **n** increases, the average distance of the valence e⁻'s from the nucleus increases... making the atom **larger**

• across a period... more p⁺'s... more attraction... smaller

- down a family... n increases... e-'s farther... larger
- + ion... lose e⁻'s... less repulsion... smaller

Ionization energy trends follow the size trends: As atoms or ions get larger, the electron being removed is farther from the nucleus... the attractions are less... the energy needed is less... the ionization energy is less.

Ionization energy **greatly increases** when you start removing electrons from an **inner shell** (**n** decreases).

Moving **across** a period, **two** other **factors** come into play: • "p" e⁻'s are **higher energy**... require **less** energy to remove than "s" e⁻'s with the same quantum number, n

• e⁻'s in **filled** orbitals are **easier** to remove than e⁻'s in singly occupied orbitals because of e⁻ - e⁻ **repulsions**.

The elements **before** and **after** a noble gas form ions by **gaining** or **losing** electrons until they have the same electron configuration as the **noble gas.**

 N^{3-} O²⁻ F⁻ Ne Na⁺ Mg²⁺ Al³⁺ all have the electron configuration: $1s^2 2s^2 2p^6$ We say these ions and atoms are **isoelectronic** *iso* means "same" and *electronic* means "electrons"

Using ideas from Study Card #5, we see that if the **electrons** are the **same** but there are **increasing** numbers of **protons**, the **increased attractions** cause the **sizes** to **decrease**.

The group or family number (I through VIII) tells you...

- the number of **valence electrons** of the elements in each family (except He which only has 2 valence electrons)
- the **ion** that commonly forms
- the **bonding capacity** (the number of bonds it will form)

	Ι	II	III	IV	V	VI	VII	VIII		
# of valence e-	1	2	3	4	5	6	7	8		
ion formed	1 +	2+	3+	*	3–	2–	1–	none		
bonding capacity	1	2	3	4	3	2	1	0		
IUPAC family #	1	2	13	14	15	16	17	18		
* Family IV usually shares e ⁻ 's rather than forming ions										