4 • Chemical Equations and Stoichiometry

STOICHIOMETRY PROBLEMS

General Stoichiometry

13. Several brands of antacid tablets use aluminum hydroxide to neutralize excess acid.

$$Al(OH)_3(s) + 3 HCl(aq) \rightarrow AlCl_3(aq) + 3 H_2O(l)$$

[Molar masses:

78.01

36.46

133.4

18.02]

What quantity of HCl, in grams, can a tablet with 0.750 g of Al(OH)₃ consume? What quantity of water is produced?

- 15. If 10.0 g of carbon is combined with an exact, stoichiometric amount of oxygen (26.6 g) to produce carbon dioxide, what mass, in grams, of CO₂ can be obtained? That is, what is the theoretical yield of CO₂? [Molar masses: C: 12.011 O₂: 32.00 CO₂: 44.01]
- 17. The equation for one of the reactions in the process of reducing iron ore to the metal is

$$Fe_2O_3(s) + 3\;CO(g) \;\to\; 2\;Fe(s) \;+\; 3\;CO_2(g)$$

[Molar masses:

159.7

28.01

55.85

44.01

- (a) What is the maximum mass of iron, in grams, that can be obtained from 454 g (1.00 lb) of iron(III) oxide?
- (b) What mass of CO is required to reduce the iron(III) oxide to iron metal?
- 19. Burning coal and oil in a power plant produces pollutants such as sulfur dioxide, SO₂. The sulfur-containing compound can be removed from other waste gases, however, by the following reaction:

$$2 SO_2(g) + 2 CaCO_3(s) + O_2(g) \rightarrow 2 CaSO_4(s) + 2 CO_2(g)$$

[Molar masses: 64.07

100.1

32.00

136.2

44.01]

- (a) Name the compounds involved in the reaction.
- (b) What mass of CaCO₃ is required to remove 155 g of SO₂?
- (c) What mass of CaSO₄ is formed when 155 g SO₂ is consumed completely?
- 21. Your body deals with excess nitrogen by excreting it in the form of urea, NH_2CONH_2 . The reaction producing it is the combination of arginine ($C_6H_{14}N_4O_2$) with water to give urea and ornithine ($C_5H_{12}N_2O_2$).

$$C_6H_{14}N_4O_2 + H_2O \rightarrow NH_2CONH_2 + C_5H_{12}N_2O_2$$

[Molar masses:

174.2

18.02

60.06

132.2]

If you excrete 95 mg of urea, what quantity of arginine must have been used? What quantity of ornithine must have been produced?

Limiting Reactants

23. The reaction of methane and water is one way to prepare hydrogen:

$$CH_4(g) + H_2O(g) \rightarrow CO(g) + 3 H_2(g)$$

[Molar masses: 16.04 18.02 28.01 2.02]

If you begin with 995 g of CH₄ and 2510 g of water, what is the maximum possible yield of H₂?

25. Disulfur dichloride, S₂Cl₂, is used to vulcanize rubber. It can be made by treating molten sulfur with gaseous chlorine:

$$S_8(l) + 4 Cl_2(g) \rightarrow 4 S_2Cl_2(l)$$

[Molar masses: 256.6 70.91 135.0]

Starting with a mixture of 32.0 g of sulfur and 71.0 g of Cb, which is the limiting reactant? What mass of S_2Cl_2 (in grams) can be produced? What mass of the excess reactant remains when the limiting reactant is consumed?

27. Aspirin ($C_9H_8O_4$) is produced by the reaction of salicylic acid ($C_7H_6O_3$) and acetic anhydride ($C_4H_6O_3$) (page 163).

$$C_7 H_6 O_3(s) \; + \; C_4 H_6 O_3(l) \; \to \; C_9 H_8 O_4(s) \; + \; C H_3 C O_2 H(aq)$$

[Molar masses: 138.1 102.1 180.1 60.05]

If you mix 100. g of each of the reactants, what is the maximum mass of aspirin that can be obtained?

Percent Yield

29. Diborane, B₂H₆, is a valuable compound in the synthesis of new organic compounds. One of several ways this born compound can be made is by the reaction

$$2 \text{ NaBH}_4(s) + I_2(s) \rightarrow B_2H_6(g) + 2 \text{ NaI}(s) + H_2(g)$$

[Molar masses: 37.84 253.8 27.67 149.9 2.02]

Suppose you use 1.203 g of NaBH₄ with an excess of iodine and obtain 0.295 g of B_2H_6 . What is the percent yield of B_2H_6 ?

31. Disulfur dichloride, which has a revolting smell, can be prepared by directly combining S8 and Cl2, but it can also be made by the following reaction:

$$3\;SCl_2(l)\;+\;4\;NaF(s)\;\to\;SF_4(g)\;+\;S_2Cl_2(l)\;+\;4\;NaCl(s)$$

[Molar masses: 103.0 41.99 108.1 135.0 58.46]

Assume you begin with 5.23 g of $SC_{\frac{1}{2}}$ and excess NaF. What is the theoretical yield of $S_2C_{\frac{1}{2}}$? If only 1.19 g of $S_2C_{\frac{1}{2}}$ is obtained, what is the percent yield of the compound?