\qquad

21 • Electron Transfer Reaction

PRACTICETEST

1. Which of the following is the correct cell notation for the reaction

$$
\mathrm{Hg}_{2}{ }^{2+}+\mathrm{Cd}(\mathrm{~s}) \rightarrow \mathrm{Cd}^{2+}+2 \mathrm{Hg}(\mathrm{l})
$$

a) $\mathrm{Cd}^{2+}|\mathrm{Cd}|\left|\mathrm{Hg}_{2}{ }^{2+}\right| \mathrm{Hg}$
b) $\mathrm{Cd}^{2+}\left|\mathrm{Hg}_{2}{ }^{2+}\right||\mathrm{Cd}| \mathrm{Hg}$
c) $\mathrm{Cd}\left|\mathrm{Cd}^{2+}\right|\left|\mathrm{Hg}_{2}{ }^{2+}\right| \mathrm{Hg}$
d) $\mathrm{Cd}^{2+}|\mathrm{Hg}|\left|\mathrm{Hg}_{2}{ }^{2+}\right| \mathrm{Cd}$
e) $\mathrm{Hg}|\mathrm{Cd}|\left|\mathrm{Hg}_{2}{ }^{2+}\right| \mathrm{Cd}^{2+}$
2. Consider an electrochemical cell where the following reaction takes place:
$3 \mathrm{Sn}^{2+}(\mathrm{aq})+2 \mathrm{Al}(\mathrm{s}) \rightarrow 3 \mathrm{Sn}(\mathrm{s})+2 \mathrm{Al}^{3+}(\mathrm{aq})$
Which of the following is the correct cell notation for this cell?
a) $\mathrm{Al}\left|\mathrm{Al}^{3+}\right|\left|\mathrm{Sn}^{2+}\right| \mathrm{Sn}$
b) $\mathrm{Al}^{3+}|\mathrm{Al}||\mathrm{Sn}| \mathrm{Sn}^{2+}$
c) $\mathrm{Sn}\left|\mathrm{Sn}^{2+}\right|\left|\mathrm{Al}^{3+}\right| \mathrm{Al}$
d) $\mathrm{Sn}\left|\mathrm{Al}^{3+}\right||\mathrm{Al}| \mathrm{Sn}^{2+}$
e) $\mathrm{Al}\left|\mathrm{Sn}^{2+} \| \mathrm{Sn}\right| \mathrm{Al}^{3+}$
3. An early method of producing aluminum metal was the reaction of aluminum salts with sodium metal:
$\mathrm{Al}^{3+}+3 \mathrm{Na}(\mathrm{s}) \rightleftharpoons \mathrm{Al}(\mathrm{s}) 3 \mathrm{Na}^{+} \quad \mathrm{E}^{\circ}=+1.05 \mathrm{~V}$
What is $\Delta \mathrm{G}^{\circ}$ for this reaction
a) -304 kJ
b) -101 kJ
c) +101 kJ
d) +202 kJ
e) +304 kJ
4. Calculate $\Delta \mathrm{G}$ for the following reaction:

$$
\mathrm{I}_{2}(\mathrm{~s})+2 \operatorname{Br}^{-}(\mathrm{aq}) \rightarrow 2 \mathrm{I}^{-}(\mathrm{aq})+\mathrm{Br}_{2}(\mathrm{l})
$$

a) +105 kJ
d) +52 kJ
b) -105 kJ e)
-312 kJ
c) +312 kJ
5. If $\Delta \mathrm{G}$ of the following reaction is -203 kJ , what is $\mathrm{E}^{\circ} ? 2 \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Ni}(\mathrm{s}) \rightarrow 2 \mathrm{Ag}(\mathrm{s})+\mathrm{Ni}^{2+}(\mathrm{aq})$
a) -1.05 V
b) +2.10 V
c) +0.0011 V
d) -0.011 V
e) +1.05 V
6. Given the two half reactions and their potentials, which net reaction is spontaneous?
$\mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Mg}(\mathrm{s}) \quad \mathrm{E}^{\circ}=-237 \mathrm{~V}$
$\mathrm{Ni}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Ni}(\mathrm{s}) \quad \mathrm{E}^{\circ}=-0.25 \mathrm{~V}$
a) $\mathrm{Ni}(\mathrm{s})+\mathrm{Mg}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Mg}(\mathrm{s})+\mathrm{Ni}^{2+}($ aq $)$
b) $\mathrm{Ni}^{2+}(\mathrm{aq})+\mathrm{Mg}(\mathrm{s}) \rightarrow \mathrm{Mg}^{2+}(\mathrm{aq})+\mathrm{Ni}(\mathrm{s})$
c) $\mathrm{Ni}(\mathrm{s})+\mathrm{Mg}(\mathrm{s}) \rightarrow \mathrm{Mg}^{2+}(\mathrm{aq})+\mathrm{Ni}^{2+}(\mathrm{aq})$
d) $\mathrm{Mg}^{2+}(\mathrm{aq})+\mathrm{Ni}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Mg}(\mathrm{s})+\mathrm{Ni}(\mathrm{s})$
e) $\mathrm{Mg}^{2+}(\mathrm{aq})+\mathrm{Mg}(\mathrm{s}) \rightarrow \mathrm{Ni}(\mathrm{s})+\mathrm{Ni}^{2+}(\mathrm{aq})$
7. Calculate E° for the following reaction:

$$
\mathrm{Sn}^{4+}(\mathrm{aq})+2 \mathrm{~K}(\mathrm{~s}) \rightarrow \mathrm{Sn}^{2+}(\mathrm{aq})+2 \mathrm{~K}^{+}(\mathrm{aq})
$$

a) +6.00 V
b) -3.08 V
c) +3.08 V
d) +2.78 V
e) -2.78 V
8. Calculate E° for the following reaction: $2 \mathrm{Al}^{3+}(\mathrm{aq})+3 \mathrm{Cd}(\mathrm{s}) \rightarrow 2 \mathrm{Al}(\mathrm{s})+3 \mathrm{Cd}^{2+}(\mathrm{aq})$
a) -2.06 V
b) +4.52 V
c) +2.06 V
d) -4.52 V
e) -1.26 V
9. Using data from the reduction potential table and the reaction
$2 \mathrm{Ag}(\mathrm{s})+\mathrm{Pt}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Pt}(\mathrm{s})+2 \mathrm{Ag}^{+}(\mathrm{aq}) \quad \mathrm{E}^{\circ}=0.38 \mathrm{~V}$ calculate the standard reduction potential of the half-reaction

$$
\mathrm{Pt}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Pt}(\mathrm{~s})
$$

a) -1.18 V
b) -0.40 V
c) 0.40 V
d) 1.18 V
e) 2.00 V
10. An electrochemical cell of notation $\operatorname{Pd} \mid \mathrm{Pd}^{2+} \|$ $\mathrm{Cu}^{2+} \mid \mathrm{Cu}$ has an $\mathrm{E}^{\circ}=-0.65 \mathrm{~V}$. If we know that the standard reduction potential of $\mathrm{Cu}^{2+} / \mathrm{Cu}$ is E° $=0.34 \mathrm{~V}$, what is the standard reduction potential for $\mathrm{Pd}^{2+} / \mathrm{Pd}$?
a) -0.99 V
b) -0.31 V
c) +0.31 V
d) 0.62 V
e) +0.99 V
11. What is the equilibrium constant for the following reaction at 298 K ?
$2 \mathrm{Ag}^{+}(\mathrm{aq})+2 \mathrm{I}^{-}(\mathrm{aq}) \rightarrow \mathrm{I}_{2}(\mathrm{~s})+2 \mathrm{Ag}(\mathrm{s}) \mathrm{E}^{\circ}=+0.265 \mathrm{~V}$
a) 2.99×10^{4}
b) 9.04×10^{8}
c) 7.73×10^{3}
d) 87.9
e) 1.60×10^{7}
12. What is the equilibrium constant for the following reaction at 20 C ?
$\mathrm{Fe}(\mathrm{s})+\mathrm{Cu}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq})+\mathrm{Cu}(\mathrm{s}) \mathrm{E}^{\circ}=+0.78 \mathrm{~V}$
a) 2.3×10^{26}
b) 6.9×10^{26}
c) 1.4×10^{27}
d) 1.8×10^{28}
e) 1.2×10^{-21}
13. What is the cell potential for
$3 \mathrm{Sn}^{4+}(\mathrm{aq})+2 \mathrm{Al}(\mathrm{s}) \rightarrow 3 \mathrm{Sn}^{2+}(\mathrm{aq})+2 \mathrm{Al}^{3+}(\mathrm{aq})$
$\mathrm{E}^{\circ}=1.81 \mathrm{~V}$ when $\left[\mathrm{Sn}^{4+}\right]=1.0,\left[\mathrm{Sn}^{2+}\right]=1.0 \times 10^{-2}$, and $\left[\mathrm{Al}^{3+}\right]=1.5 \times 10^{-3}$ at 298 K .
a) 1.70 V
b) 1.76 V
c) 1.81 V
d) 1.86 V
e) 1.93 V
14. If the potential cell is +1.32 V at $\mathrm{Q}=0.0969$ with $\mathrm{n}=2$, what is the standard potential of the cell?
a) +1.35 V
b) +1.48 V
c) +1.31 V
d) +1.34 V
e) +1.29 V
15. Predict the product at the anode when electric current is passed through a solution of KI.
a) $\mathrm{I}_{2}(\mathrm{I})$
b) $\mathrm{K}^{+}(\mathrm{aq})$
c) $\mathrm{H}_{2}(\mathrm{~g})$
d) $\mathrm{K}(\mathrm{s})$
e) $\mathrm{O}_{2}(\mathrm{~g})$
16. If electric current is passed through aqueous LiBr , the product at the cathode would be
\qquad and the product at the anode would be \qquad .
a) $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \mathrm{Li}^{+}(\mathrm{aq})$
b) $\mathrm{Br}_{2}(\mathrm{l}), \mathrm{Li}(\mathrm{s})$
c) $\mathrm{Li}(\mathrm{s}), \mathrm{Br}_{2}(\mathrm{l})$
d) $\mathrm{Br}_{2}(\mathrm{l}), \mathrm{H}_{2}(\mathrm{~g})$
e) $\mathrm{H}_{2}(\mathrm{~g}), \mathrm{Br}_{2}(\mathrm{l})$
17. How long would it take to deposit 1.36 g of copper from an aqueous solution of copper(II) sulfate by passing a current of two amperes through the solution?
a) 2070 sec
b) $1.11 \times 10^{-5} \mathrm{sec}$
c) 2570 sec
d) 736 sec
e) 1030 sec
18. If a current of 6.0 amps is passed through a solution of Ag^{+}for 1.5 hours, how many grams of silver are produced?
a) 0.60 g
b) 36 g
c) 0.34 g
d) 3.0 g
e) 1.0 g
19. How many kilowatt hours of electrical energy are required to plate 2.00 grams of silver from an aqueous solution of silver nitrate on to a necklace using 3.00 V ? (1 joule $=1$ volt-coulomb and $1 \mathrm{kwh}=3.60 \times 10^{6} \mathrm{~J}$)
a) 0.00135 kwh
b) 0.000165 kwh
c) 32.4 kwh
d) 0.00149 kwh
e) 2.07 kwh
20. How is aluminum currently produced in industry?
a) by reduction of Al^{3+} in $\mathrm{Al}_{2} \mathrm{O}_{3}$ with $\mathrm{Na}(\mathrm{s})$
b) electrochemical reduction of pure $\mathrm{Al}_{2} \mathrm{O}_{3}$ to give Al and O_{2}
c) electrolysis of AlF_{3} to give Al and F_{2}
d) electrolysis of a mixture of $\mathrm{Al}_{2} \mathrm{O}_{3}$ and $\mathrm{Na}_{3} \mathrm{AlF}_{6}$ to give Al and O_{2}
e) by reduction of Al^{3+} in $\mathrm{Al}_{2} \mathrm{O}_{3}$ with $\mathrm{CO}(\mathrm{g})$
21. How as aluminum originally made?
a) the Hall-Heroult process
b) $\mathrm{Al}_{2} \mathrm{O}_{3}$ mixed with cryolite is electrolyzed
c) electrolysis of molten $\mathrm{Al}_{2} \mathrm{O}_{3}$
d) mining and purifying directly
e) reducing AlCl_{3} with sodium
22. Using data from the reduction potential table, predict which of the following is the best oxidizing agent.
a) F_{2}
b) Ag
c) Sn^{4+}
d) Ag^{+}
e) Al^{3+}
23. Under acidic conditions the bromate ion is reduced to the bromide ion. Write the balance half-reaction for this process.
a) $\mathrm{BrO}_{3}^{-}+6 \mathrm{H}^{+}+6 \mathrm{e} \rightarrow \mathrm{Br}^{-}+3 \mathrm{H}_{2} \mathrm{O}$
b) $2 \mathrm{BrO}_{3}{ }^{-}+6 \mathrm{H}^{+} \rightarrow \mathrm{Br}_{2}{ }^{-}+6 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{e}$
c) $\mathrm{BrO}_{3}{ }^{-}+6 \mathrm{H}_{2} \mathrm{O}+10 \mathrm{e} \rightarrow \mathrm{Br}_{2}{ }^{-}+12 \mathrm{H}^{+}+3 \mathrm{O}_{2}$
d) $2 \mathrm{BrO}_{3}^{-}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{Br}^{-}+12 \mathrm{H}^{+}+6 \mathrm{O}_{2}+8 \mathrm{e}$
e) $2 \mathrm{BrO}_{3}{ }^{-}+6 \mathrm{H}^{+} \rightarrow \mathrm{Br}_{2}^{-}+3 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{e}$
24. Balance the following redox edquation which occurs in acidic solution.

$$
\mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{BrO}_{3}^{-}(\mathrm{aq}) \rightarrow \mathrm{Br}^{-}(\mathrm{aq})+\mathrm{N}_{2}(\mathrm{~g})
$$

a) $3 \mathrm{~N}_{2} \mathrm{H}_{4}+\mathrm{BrO}_{3}{ }^{-} \rightarrow 3 \mathrm{~N}_{2}+\mathrm{Br}^{-}+3 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{H}^{+}$
b) $\mathrm{N}_{2} \mathrm{H}_{4}+\mathrm{BrO}_{3}^{-}+2 \mathrm{H}^{+} \rightarrow 2 \mathrm{Br}^{-}+\mathrm{N}_{2}+3 \mathrm{H}_{2} \mathrm{O}$
c) $3 \mathrm{~N}_{2} \mathrm{H}_{4}+2 \mathrm{BrO}_{3}^{-}+12 \mathrm{H}^{+} \rightarrow$

$$
3 \mathrm{~N}_{2}+2 \mathrm{Br}^{-}+6 \mathrm{H}_{2} \mathrm{O}+12 \mathrm{H}^{+}
$$

d) $\mathrm{N}_{2} \mathrm{H}_{4}+2 \mathrm{BrO}_{3}^{-}+8 \mathrm{H}^{+} \rightarrow 2 \mathrm{Br}^{-}+\mathrm{N}_{2}+6 \mathrm{H}_{2} \mathrm{O}$
e) $3 \mathrm{~N}_{2} \mathrm{H}_{4}+2 \mathrm{BrO}_{3}{ }^{-} \rightarrow 3 \mathrm{~N}_{2}+2 \mathrm{Br}^{-}+6 \mathrm{H}_{2} \mathrm{O}$
25. Which of the following reactions is NOT a redox reaction?
a) $2 \mathrm{HgO}(\mathrm{s}) \rightarrow 2 \mathrm{Hg}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g})$
b) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HBr}(\mathrm{g})$
c) $2 \mathrm{HCl}(\mathrm{aq})+\mathrm{Zn}(\mathrm{s}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{ZnCl}_{2}(\mathrm{aq})$
d) $\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})$
e) $2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g})$

Standard Reduction Potentials at $\mathbf{2 5}^{\circ} \mathbf{C} \mathbf{E}^{\circ}$ (volts)

$\mathrm{F}_{2}(\mathrm{~g})+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{~F}(\mathrm{aq})$	+2.87
$\mathrm{Au}^{3+}+3 \mathrm{e}^{-} \rightarrow \mathrm{Au}(\mathrm{s})$	+1.50
$\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cl}(\mathrm{aq})$	+1.36
$\mathrm{O}_{2}(\mathrm{~g})+4 \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+4 \mathrm{e}^{-} \rightarrow 6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	+1.23
$\mathrm{Br}_{2}(\mathrm{l})+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Br}^{-}(\mathrm{aq})$	+1.08
$\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Ag}(\mathrm{s})$	+0.80
$\mathrm{I}_{2}(\mathrm{~s})+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{I}^{-}(\mathrm{aq})$	+0.535
$\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s})$	+0.337
$\mathrm{Sn}^{4+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Sn}{ }^{2+}(\mathrm{aq})$	+0.15
$\mathrm{Sn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Sn}(\mathrm{s})$	-0.14
$\mathrm{Cd}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cd}(\mathrm{s})$	-0.40
$\mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Zn}(\mathrm{s})$	-0.763
$2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{OH}(\mathrm{aq})$	-0.828
$\mathrm{Al}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Al}(\mathrm{s})$	-1.66
$\mathrm{~K}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{K}(\mathrm{s})$	-2.93
$\mathrm{Li}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Li}(\mathrm{s})$	-3.045

Answers:

1.	C
2.	A
3.	A
4.	A
5.	E

11.	B
12.	B
	E
13.	
14.	E
15.	A

6.
7.
8.
9.
10.

21.
22.
23.
24.
25.

E
A
A
E
D

