Period ____ Date ___/___/

21 • Electron Transfer Reaction

- 1. Which of the following is the correct cell notation for the reaction
 - $Hg_2^{2+} + Cd(s) \rightarrow Cd^{2+} + 2Hg(l)$
 - a) $Cd^{2+} | Cd | | Hg_2^{2+} | Hg$
 - b) $Cd^{2+} | Hg_2^{2+} | | Cd | Hg$
 - c) $Cd | Cd^{2+} | | Hg_2^{2+} | Hg$
 - d) $Cd^{2+} |Hg| |Hg_2^{2+} |Cd|$
 - e) $Hg | Cd | | Hg_2^{2+} | Cd^{2+}$
- 2. Consider an electrochemical cell where the following reaction takes place:
 - $3\text{Sn}^{2+}(aq) + 2\text{Al}(s) \rightarrow 3\text{Sn}(s) + 2\text{Al}^{3+}(aq)$ Which of the following is the correct cell notation for this cell?
 - a) Al $|Al^{3+}| |Sn^{2+}| Sn$
 - b) $Al^{3+} |Al| |Sn| Sn^{2+}$
 - c) $Sn | Sn^{2+} | | Al^{3+} | Al$
 - d) $Sn | Al^{3+} | | Al | Sn^{2+}$
 - e) Al | Sn²⁺ | | Sn | Al³⁺
- 3. An early method of producing aluminum metal was the reaction of aluminum salts with sodium metal:

Al³⁺ + 3Na(s) \rightleftharpoons Al(s) 3Na⁺ E° = +1.05 V What is ∆G° for this reaction a) -304 kJ d) +202 kJ

- b) -101 kJ c) +304 kJ
- c) +101 kJ
- 4. Calculate ΔG for the following reaction:
 - $I_2(s) + 2Br(aq) \rightarrow 2I(aq) + Br_2(l)$
 - a) +105 kJ d) +52 kJ
 - b) -105 kJ e) -312 kJ
 - c) +312 kJ
- 5. If ΔG of the following reaction is -203 kJ, what is E° ? $2Ag^{+}(aq) + Ni(s) \rightarrow 2Ag(s) + Ni^{2+}(aq)$
 - a) -1.05 V d) -0.011 V b) +2.10 V e) +1.05 V
 - c) +0.0011 V

PRACTICE TEST

6. Given the two half reactions and their potentials, which net reaction is spontaneous?

 $Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$ $E^{\circ} = -237 \text{ V}$

- $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $E^{\circ} = -0.25 V$
- a) $\operatorname{Ni}(s) + \operatorname{Mg}^{2+}(aq) \to \operatorname{Mg}(s) + \operatorname{Ni}^{2+}(aq)$
- b) $Ni^{2+}(aq) + Mg(s) \rightarrow Mg^{2+}(aq) + Ni(s)$
- c) $Ni(s) + Mg(s) \rightarrow Mg^{2+}(aq) + Ni^{2+}(aq)$
- d) $Mg^{2+}(aq) + Ni^{2+}(aq) \to Mg(s) + Ni(s)$
- e) $Mg^{2+}(aq) + Mg(s) \rightarrow Ni(s) + Ni^{2+}(aq)$
- 7. Calculate E° for the following reaction:
 - $\operatorname{Sn}^{4+}(\operatorname{aq}) + 2\operatorname{K}(\operatorname{s}) \to \operatorname{Sn}^{2+}(\operatorname{aq}) + 2\operatorname{K}^{+}(\operatorname{aq})$
 - a) +6.00 V d) +2.78 V
 - b) -3.08 V e) -2.78 V
 - c) +3.08 V
- 8. Calculate E° for the following reaction:

 $2Al^{3+}(aq) + 3Cd(s) \rightarrow 2Al(s) + 3Cd^{2+}(aq)$ a) -2.06 V d) -4.52 V b) +4.52 V e) -1.26 V c) +2.06 V

9. Using data from the reduction potential table and the reaction

 $2Ag(s) + Pt^{2+}(aq) \rightarrow Pt(s) + 2Ag^{+}(aq)$ $E^{\circ} = 0.38 V$ calculate the standard reduction potential of the half-reaction

	$Pt^{2+}(aq) +$	2e ⁻ →	Pt(s)
a)	-1.18 V	d)	1.18 V
b)	-0.40 V	e)	2.00 V
c)	0.40 V		

- 10. An electrochemical cell of notation Pd $|Pd^{2+}||$ Cu²⁺ | Cu has an E° = -0.65 V. If we know that the standard reduction potential of Cu²⁺/Cu is E° = 0.34 V, what is the standard reduction potential for Pd²⁺/Pd?
 - a) -0.99 V d) 0.62 V
 - b) -0.31 V e) +0.99 V
 - c) +0.31 V

e _____

11. What is the equilibrium constant for the following reaction at 298 K?

 $\begin{array}{rrrr} 2Ag^{+}(aq) + 2I^{-}(aq) \rightarrow I_{2}(s) + 2Ag(s) & E^{\circ} = +0.265 \ V \\ a) & 2.99 \ x \ 10^{4} & d) & 87.9 \\ b) & 9.04 \ x \ 10^{8} & e) & 1.60 \ x \ 10^{7} \\ & & & & \\ \end{array}$

- c) 7.73 x 10^3
- 12. What is the equilibrium constant for the following reaction at 20C?
- $\begin{array}{rl} \mbox{Fe(s)} + \mbox{Cu}^{2+}(\mbox{aq}) \rightarrow \mbox{Fe}^{2+}(\mbox{aq}) + \mbox{Cu(s)} & \mbox{E}^\circ = +0.78 \ V \\ \mbox{a)} & 2.3 \ x \ 10^{26} & \mbox{d)} & 1.8 \ x \ 10^{28} \\ \mbox{b)} & 6.9 \ x \ 10^{26} & \mbox{e)} & 1.2 \ x \ 10^{-21} \end{array}$
 - c) 1.4×10^{27}
- 13. What is the cell potential for
- $$\begin{split} &3\text{Sn}^{4+}(\text{aq}) + 2\text{Al}(\text{s}) \to 3\text{Sn}^{2+}(\text{aq}) + 2\text{Al}^{3+}(\text{aq}) \\ &\text{E}^\circ = 1.81 \text{ V when } [\text{Sn}^{4+}] = 1.0, \ [\text{Sn}^{2+}] = 1.0 \text{ x } 10^{-2}, \\ &\text{and } [\text{Al}^{3+}] = 1.5 \text{ x } 10^{-3} \text{ at } 298 \text{ K}. \\ &\text{a)} \quad 1.70 \text{ V} \qquad \text{d)} \quad 1.86 \text{ V} \end{split}$$
 - b) 1.76 V e) 1.93 V
 - c) 1.81 V
- 14. If the potential cell is +1.32 V at Q = 0.0969 with n = 2, what is the standard potential of the cell?

a)	+1.35 V	d)	+1.34 V
b)	+1.48 V	e)	+1.29 V
c)	+1.31 V		

15. Predict the product at the anode when electric current is passed through a solution of KI.

a)	$I_2(l)$	d)	K(s)
b)	$K^+(aq)$	e)	$O_2(g)$
c)	$H_2(g)$		

16. If electric current is passed through aqueous LiBr, the product at the cathode would be

_____ and the product at the anode would

- $\begin{array}{c} \text{be} \ \underline{\qquad} \\ \text{a)} \ \ H_2O(l), \ Li^+(aq) \qquad d) \quad Br_2(l), \ H_2(g) \end{array}$
- b) $Br_2(l), Li(s)$ e) $H_2(g), Br_2(l)$
- c) Li(s), $Br_2(l)$

- 17. How long would it take to deposit 1.36 g of copper from an aqueous solution of copper(II) sulfate by passing a current of two amperes through the solution?
 - a) 2070 sec d) 736 sec
 - b) $1.11 \ge 10^{-5} \sec$ e) 1030 sec
 - c) 2570 sec
- 18. If a current of 6.0 amps is passed through a solution of Ag⁺ for 1.5 hours, how many grams of silver are produced?
 - a) 0.60 g d) 3.0 g
 - b) 36 g e) 1.0 g
 - c) 0.34 g
- 19. How many kilowatt hours of electrical energy are required to plate 2.00 grams of silver from an aqueous solution of silver nitrate on to a necklace using 3.00V? (1 joule = 1 volt-coulomb and 1 kwh = 3.60×10^6 J)
 - a) 0.00135 kwh d) 0.00149 kwh
 - b) 0.000165 kwh e) 2.07 kwh
 - c) 32.4 kwh
- 20. How is aluminum currently produced in industry?
 - a) by reduction of Al^{3+} in Al_2O_3 with Na(s)
 - b) electrochemical reduction of pure Al_2O_3 to give Al and O_2
 - c) electrolysis of AlF_3 to give Al and F_2
 - d) electrolysis of a mixture of Al_2O_3 and Na_3AlF_6 to give Al and O_2
 - e) by reduction of Al^{3+} in Al_2O_3 with CO(g)
- 21. How as aluminum originally made?
 - a) the Hall-Heroult process
 - b) Al_2O_3 mixed with cryolite is electrolyzed
 - c) electrolysis of molten Al₂O₃
 - d) mining and purifying directly
 - e) reducing AlCl₃ with sodium
- 22. Using data from the reduction potential table, predict which of the following is the best oxidizing agent.
 - a) F_2 d) Ag^+
 - b) Ag e) Al^{3+}
 - c) Sn^{4+}

- 23. Under acidic conditions the bromate ion is reduced to the bromide ion. Write the balance half-reaction for this process.
 - a) $BrO_3^- + 6H^+ + 6e \rightarrow Br^- + 3H_2O$
 - b) $2BrO_3^- + 6H^+ \rightarrow Br_2^- + 6H_2O + 3e$
 - c) $Bro_3^{-} + 6H_2O + 10e \rightarrow Br_2^{-} + 12H^+ + 3O_2$
 - d) $2BrO_3^- + 6H_2O \rightarrow 2Br^- + 12H^+ + 6O_2 + 8e$
 - e) $2BrO_3^{-} + 6H^+ \rightarrow Br_2^{-} + 3H_2O + 3e$

24. Balance the following redox education which occurs in acidic solution.

$N_2H_4(g) + BrO_3(aq) \rightarrow Br(aq) + N_2(g)$ a) $3N_2H_4 + BrO_3^- \rightarrow 3N_2 + Br^- + 3H_2O + 6H^+$ b) $N_2H_4 + BrO_3^- + 2H^+ \rightarrow 2Br^- + N_2 + 3H_2O$

- c) $3N_2H_4 + 2BrO_3^- + 12H^+ \rightarrow$ $3N_2 + 2Br + 6H_2O + 12H^+$ d) $N_2H_4 + 2BrO_3^- + 8H^+ \rightarrow 2Br^- + N_2 + 6H_2O$ e) $3N_2H_4 + 2BrO_3 \rightarrow 3N_2 + 2Br^2 + 6H_2O$
- 25. Which of the following reactions is NOT a redox reaction?
 - a) $2\text{HgO}(s) \rightarrow 2\text{Hg(l)} + O_2(g)$
 - b) $H_2(g) + Br_2(g) \rightarrow 2HBr(g)$
 - c) $2HCl(aq) + Zn(s) \rightarrow H_2(g) + ZnCl_2(aq)$
 - d) $H_2CO_3(aq) \rightarrow H_2O(l) + CO_2(g)$
 - e) $2\text{KClO}_3 \rightarrow 2\text{KCl}(s) + 3\text{ O}_2(g)$

Standard Reduction Potentials at 25°C E° (volts)

$$Au^{3+} + 3e^{-} \rightarrow Au(s) +1.50$$

$$Cl_{2}(g) + 2e^{-} \rightarrow 2Cl(ag) +1.36$$

$$Cl_2(g) + 2e^- \rightarrow 2CI(aq) + 1.36$$

- $O_2(g) + 4H_3O^+(aq) + 4e^- \rightarrow 6H_2O(l)$ +1.23
- $Br_2(l) + 2e^- \rightarrow 2Br(aq)$ +1.08
- $Ag^{+}(aq) + e^{-} \rightarrow Ag(s)$ +0.80
- $I_2(s) + 2e^- \rightarrow 2I^-(aq)$ +0.535
- $Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$ +0.337
- $\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$ +0.15
- $\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}(s)$ -0.14
- $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$ -0.40
- $Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$ -0.763
- $2H_2O(1) + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$ -0.828 $Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$ -1.66
- $K^+(aq) + e^- \rightarrow K(s)$ -2.93
- $Li^+(aq) + e^- \rightarrow Li(s)$ -3.045

Answers:

1.	С	11.
2.	А	12.
3.	А	13.
4.	А	14.
5.	Е	15.

21.	Е
22.	А
23.	А
24.	Е
25.	D

6.	В	16.	E
7.	С	17.	Α
8.	Е	18.	В
9.	D	19.	D
10.	Е	20.	D

Е	
А	
В	
D	
D	

В

В

Ε

Ε

А