60.

$$
\begin{aligned}
\underline{M}=\frac{\text { mols }}{\text { Liters }} & =\frac{6.73 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}}{250 \cdot \mathrm{~mL}} \times \frac{1000 \mathrm{ml}}{1 \mathrm{~L}} \times \frac{1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3}}{105.99 \mathrm{~g}} \\
& =0.253986 \mathrm{M} \\
& =0.254 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}
\end{aligned}
$$

$62.250 . \mathrm{mL} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}} \times \frac{.0125 \mathrm{mil}}{\frac{\mathrm{M}}{\mathrm{L}}} \cdot \frac{158.04 \mathrm{~g} \mathrm{KHnOy}^{1 \text { mol } \mathrm{KMnO}_{4}}}{}=$

$$
\begin{aligned}
& =0.493875 \\
& =0.494 \mathrm{~g} \mathrm{KMnO}_{4}
\end{aligned}
$$

69. $25.0 \mathrm{~g} \mathrm{NaOH} \times \frac{1 \mathrm{~mol} \mathrm{NaOH}}{40.0 \mathrm{~g}} \times \frac{1 \mathrm{~L}}{0.125 \mathrm{~mol}} \times \frac{1000 \mathrm{~mL}}{1 \mathrm{~L}}=5000 \mathrm{~mL}$
70. $V \cdot \underline{M}=V \cdot \underline{M}$

$$
\begin{aligned}
(4.00 \mathrm{~mL})(0.0250 \mathrm{M}) & =(10.0 \mathrm{~mL}) x \\
x & =0.0100 \mathrm{M}
\end{aligned}
$$

70. a) $\left[\mathrm{NH}_{4}+\right]=2 \times 0.25 \mathrm{M}=0.50 \mathrm{M}$
$\left[\mathrm{SO}_{4}^{2-}\right]=0.25 \mathrm{M}$
b) $\left[\mathrm{H}^{+}\right]=0.056 \mathrm{M}$

$$
\left[\mathrm{NO}_{3}^{-}\right]=0.056 \mathrm{M}
$$

c) $\left[\mathrm{Na}^{+}\right]=2 \times 0.123 \mathrm{M}=0.246 \mathrm{M}$

$$
\left[\mathrm{CO}_{3}^{2-}\right]=0.125 \mathrm{M}
$$

d)

$$
\begin{aligned}
& {\left[\mathrm{K}^{+}\right]=0.00124 \mathrm{M}} \\
& {\left[\mathrm{ClO}_{4}^{-}\right]=0.00124 \mathrm{M}}
\end{aligned}
$$

$$
=121.4 \mathrm{~mL}=121 \mathrm{~mL} \mathrm{HNO}
$$

76. $0.250 \mathrm{~g} \mathrm{AgBr} \times \frac{1 m o \mathrm{AgBr}}{187.8 \mathrm{~g}} \times \frac{2 \mathrm{mv} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}}{1 \text { mos AgBr }} \sqrt{\frac{1000 \mathrm{~mL}^{-1}}{0.0138 \mathrm{M}}}$

$$
=192.9 \mathrm{~mL}=193 \mathrm{~mL}
$$

82. $1.33 \mathrm{~g} \mathrm{NaOH}, \frac{1 \mathrm{molNaOH}}{400 \mathrm{~g}} \times \frac{1 \text { me } 4 \mathrm{Cl}}{1 \mathrm{moN} \mathrm{NaOL}} \times \frac{1000 \mathrm{mlHCl}}{0.812 \mathrm{mel}^{-1}}$

$$
\begin{aligned}
& =40.948 \mathrm{mt} \\
& =40.9 \mathrm{~mL}
\end{aligned}
$$

corrected answer for \#84.
84. $2.152 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3} \times \frac{1 \mathrm{mal} \mathrm{Na} \mathrm{CO}_{3}}{105.99 \mathrm{~g}} \times \frac{2 \mathrm{~mol} \mathrm{HCl}^{1 \mathrm{moN} \mathrm{NaCO}} 3}{10} \times \frac{1000 \mathrm{~mL}}{0.955 \mathrm{~mol} \mathrm{HCl}}=42.5^{2} \mathrm{~mL} \mathrm{HCl}$

