6 • Energy and Chemical Reactions

HEATING CURVE CALCULATIONS

In the heating and cooling curves we learned that energy is absorbed by a substance as it warms up, melts (fusion) or boils (vaporization) and energy is released from a substance as it cools down, condenses, or freezes.

Calorimetry ($q=mC\Delta T$) allows us to calculate the energy changes as a substance warms or cools. (1, 3, & 5)

The energies involved in **phase changes** (areas 2 & 4) are the **Heat of Vaporization** (liquid \rightarrow gas) and the **Heat of Fusion** (solid \rightarrow liquid). These energies will be used as conversion factors.

Heat of Vaporization or	Heat of Fusion (melting) or
Heat of Condensation	Heat of Solidification
of water	of water
$H_{\text{vap}} = \frac{2330 \text{J}}{\text{gram}}$	$H_{\text{fus}} = \frac{335 \text{J}}{\text{gram}}$

Joules (J) are energy units. It takes 4.184 Joules of energy to heat 1 gram of water by 1 °C.

Examples:

Calculate the energy needed to vaporize 10.0 g of water.

10.0 g H₂O x
$$\frac{2330 \text{ J}}{\text{gram}}$$
 = 23,000 J = 23.0 kJ

Calculate the energy released when 10.0 kg of water melts.

10.0 kg H₂O x
$$\frac{1000 \text{ g}}{1 \text{ kg}}$$
 x $\frac{335 \text{ J}}{\text{gram}}$ = 3,350,000 J = 3,350 kJ

Do the following calculations. Show your equation for each problem. Box your answers.

1. Calculate the energy needed to vaporize...

a) 15.0 g of water
$$\times \frac{23303}{19} = 34,9503 = 34.95 \text{ k}$$

b) 5.75 kg of water
$$\frac{10009}{1 \text{ kg}} = \frac{2330 \text{ J}}{1 \text{ g}} = \frac{13.397,500 \text{ J}}{1 \text{ kg}} = \frac{13.400 \text{ kJ}}{1 \text{ kg}}$$

c) 3.88 moles of water
$$\frac{18.028}{lmoe} = \frac{23305}{l} = [162,9085] = [163 k]$$

b) 175 kJ of energy
$$\frac{10007}{167} = \frac{19}{2330.7} = 75.19$$

c) 135 J of energy
$$\sqrt{\frac{19}{23703}} = 6.0579 g$$

Calculate the energy needed to melt... 3.

a) 23.0 g of water
$$\sqrt{\frac{335}{19}}$$
 $J = 7,705$ $J = 7,710$ $J = 7.71$ kJ
b) 8.75 kg of water $\sqrt{\frac{1000}{119}}$ $\sqrt{\frac{335}{19}}$ $J = 2,930$ kJ

b) 8.75 kg of water
$$\sqrt{1000}$$
 g $\sqrt{335}$ J = 2, 931, 250 J = 2 , 930 kJ

c) 3.25 moles of water
$$= \frac{18.02}{100} = \frac{335}{100} = 19,619 = 19.6 \text{ kJ}$$

Calculate the mass of water (in grams) that will be melted by...
$$89.55g = 89.6g$$

a) 30.0 kJ of energy $\frac{10005}{1113} = \frac{10005}{3355} = \frac{10005}{3355$

b) 7.60 kJ of energy
$$\sqrt{\frac{10003}{143}} = 22.49$$

c) 133 J of energy
$$\frac{19}{3355} = [0.3979]$$

5. Calculate the energy...

Calculate the energy...

a) absorbed by 35.8 g of ice melting
$$\sqrt{335}$$
 $\sqrt{3}$ $\sqrt{3}$

d) absorbed as 13.6 g of water vaporizes
$$\frac{2330}{13} = 31,688$$
 $J = 31.7$ kJ

e) absorbed when 2.25 moles of ice melts
$$\sqrt{18.825} = 13.582$$
 . $\sqrt{335} = 13.582$. $\sqrt{5} = 13.6$ kJ

absorbed when 2.25 moles of water vaporizes
$$= 18.02 \text{ J} = 94,469 \text{ J}$$

 $= 94.5 \text{ kJ}$

A 25.00 gram sample of ice at 0.0°C melts and then warms up to 20.0°C. How much energy is absorbed? 6.

WARMS
$$g = m \in \Delta 7$$

 $f = (25.00 g)(4.1845)(20.0 e) = 2,0925$
From the Tora: 10,467 $J = [10.47 k]$